2 research outputs found

    Bicoloring Random Hypergraphs

    Full text link
    We study the problem of bicoloring random hypergraphs, both numerically and analytically. We apply the zero-temperature cavity method to find analytical results for the phase transitions (dynamic and static) in the 1RSB approximation. These points appear to be in agreement with the results of the numerical algorithm. In the second part, we implement and test the Survey Propagation algorithm for specific bicoloring instances in the so called HARD-SAT phase.Comment: 14 pages, 10 figure

    Polynomial iterative algorithms for coloring and analyzing random graphs

    Get PDF
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c∈[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This lead us to propose a new algorithm able to color in polynomial time random graphs in the hard but colorable region, i.e when c∈[cd,cq]c\in [c_d,c_q].Comment: 23 pages, 10 eps figure
    corecore